Температура плавления фтора. Фтор (F): все о химическом элементе и его роли в жизни человека. Магнитные свойства ядер

ФТОР (лат. Fluorum), F, химический элемент с атомным номером 9, атомная масса 18,998403. Природный фтор состоит из одного стабильного нуклида 19 F. Конфигурация внешнего электронного слоя 2s2p5. В соединениях проявляет только степень окисления –1 (валентность I). Фтор расположен во втором периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам . При нормальных условиях газ бледно-желтого цвета с резким запахом.

История открытия фтора связана с минералом флюоритом, или плавиковым шпатом, описанным в конце 15 века. Состав этого минерала, как сейчас известно, отвечает формуле CaF 2 , и он представляет собой первое содержащее фтор вещество, которое начал использовать человек. В давние времена было отмечено, что если флюорит добавить при выплавке металла к руде, то температура плавления руды и шлаков понижается, что значительно облегчает проведение процесса (отсюда название минерала - от лат. fluo - теку).
В 1771 году обработкой флюорита серной кислотой шведский химик К. Шееле приготовил кислоту, которую он назвал «плавиковой». Французский ученый А. Лавуазье предположил, что в состав этой кислоты входит новый химический элемент, который он предложил назвать «флуорем» (Лавуазье считал, что плавиковая кислота - это соединение флуория с кислородом , ведь, по мнению Лавуазье, все кислоты должны содержать кислород). Однако выделить новый элемент он не смог.
За новым элементом укрепилось название «флюор», которое отражено и в его латинском названии. Но длительные попытки выделить этот элемент в свободном виде успеха не имели. Многие ученые, пытавшиеся получить его в свободном виде, погибли при проведении таких опытов или стали инвалидами. Это и английские химики братья Т. и Г. Ноксы, и французы Ж.-Л. Гей-Люссак и Л. Ж. Тенар, и многие другие. Сам Г. Дэви, первым получивший в свободном виде натрий (Na), калий (K), кальций (Ca) и другие элементы, в результате экспериментов по получению фтора электролизом отравился и тяжело заболел. Вероятно, под впечатлением всех этих неудач в 1816 году для нового элемента было предложено хотя и сходное по звучанию, но совершенно другое по смыслу название - фтор (от греч. phtoros - разрушение, гибель). Это название элемента принято только в русском языке, французы и немцы продолжают называть фтор fluor, англичане - fluorine.
Получить фтор в свободном виде не смог и такой выдающийся ученый, как М. Фарадей. Только в 1886 году французский химик А. Муассан, используя электролиз жидкого фтороводорода HF, охлажденного до температуры –23°C (в жидкости должно содержаться немного фторида калия KF, который обеспечивает ее электропроводимость), смог на аноде получить первую порцию нового, чрезвычайно реакционноспособного газа. В первых опытах для получения фтора Муассан использовал очень дорогой электролизер, изготовленный из платины (Pt) и иридия (Ir). При этом каждый грамм полученного фтора «съедал» до 6 г платины. Позднее Муассан стал использовать значительно более дешевый медный электролизер. Фтор реагирует с медью (Cu), но при реакции образуется тончайшая пленка фторида, которая препятствует дальнейшему разрушению металла.
Химия фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "фтор" (от греческого phthoros - разрушение, гибель), предложенное А. Ампером в 1810, употребляется только в русском языке; во многих странах принято название "флюор".

Нахождение в природе: содержание фтора в земной коре довольно велико и составляет 0,095% по массе (значительно больше, чем ближайшего аналога фтора по группе - хлора (Cl)). Из-за высокой химической активности фтор в свободном виде, разумеется, не встречается. Фтор как примесь входит в состав многих минералов, содержится в подземных водах и в морской воде. Фтор присутствует в вулка­нических газах и термальных водах. Важ­нейшие соединения фтора - флюорит, крио­лит и топаз. Всего известно 86 фторсодержащих мине­ралов. Соединения фтора находятся также в апатитах, фосфоритах и других. Фтор - важный биогенный элемент. В истории Земли источником поступления фтора в био­сферу были продукты извержения вулка­нов (газы и др.).

При обычных условиях фтор - газ (плотность 1,693 кг/м 3) с резким запахом. Температура кипения –188,14°C, температура плавления –219,62°C. В твердом состоянии образует две модификации: a-форму, существующую от температуры плавления до –227,60°C, и b-форму, устойчивую при температурах, более низких, чем –227,60°C.
Как и другие галогены, фтор существует в виде двухатомных молекул F 2 . Межъядерное расстояние в молекуле 0,14165 нм. Молекулу F 2 характеризует аномально низкая энергия диссоциации на атомы (158 кДж/моль), что, в частности, обусловливает высокую реакционную способность фтора. Прямое фторирование имеет цепной механизм и легко может перейти в горение и взрыв.
Химическая активность фтора чрезвычайно велика. Из всех элементов со фтором не образуют фторидов только три легких инертных газа - гелий , неон и аргон. Не реагируют со фтором непосредственно в обычных условиях, кроме указанных инертных газов, также азот (N), кислород (O), алмаз, углекислый и угарный газы. Во всех соединениях фтор проявляет только одну степень окисления –1.
Со многими простыми и сложными веществами фтор реагирует напрямую. Так, при контакте с водой фтор реагирует с ней (часто говорят, что «вода горит во фторе»), при этом образуется также OF 2 и пере­кись водорода Н 2 О 2 .
2F 2 + 2H 2 O = 4HF + O 2
Фтор реагирует со взрывом при простом контакте с водородом (H):
H 2 + F 2 = 2HF
При этом образуется газ фтороводород HF, неограниченно растворимый в воде с образованием сравнительно слабой плавиковой кислоты.
С кислородом взаимодействует в тлеющем разряде , образуя при низких температурах фториды кислорода О 2 Р 3 , О 3 F 2 и др.
Реакции фтора с другими галогенами экзотермичны, в резуль­тате образуются межгалогенные соедине­ния. Хлор взаимодействует с фтором при нагревании до 200-250 °С, давая монофто­ристый хлор СlF и трехфтористый хлор СlF 3 . Известен также СlF 3 , получаемый фторированием СlF 3 при высокой температуре и давлении 25 Мн/м 2 (250 кгс/см 2). Бром и иод воспламеняются в атмосфере фтора при обычной темпере, при этом могут быть получены BrF 3 , BrF 5 , IF 5 , IF 7 . Фтор непосредственно реагирует с криптоном, ксеноном и радоном, образуя соответ­ствующие фториды (например, ХeF 4 , ХеF 6 , КrF 2). Известны также оксифторид и ксенона.
Взаимодействие фтора с серой сопровож­дается выделением тепла и приводит к образованию многочисленных фторидов серы. Селен и теллур образуют высшие фториды SеF 6 и ТеF 6 . Фтор с азотом реагирует лишь в электрическом разряде. Древесный уголь при взаи­модействии с фтором воспламеняется при обычной температуре; графит реагирует с ним при сильном нагревании, при этом воз­можно образование твердого фтористого графита или газообразных перфторуглеродов CF 4 и C 2 F 6 . С кремнием, фосфором, мышьяком фтор взаимо­действует на холоду, образуя соответст­вующие фториды.
Фтор энергично соединяется с большинством металлов; щелочные и щелочно-земельные металлы воспламеняются в атмосфере фтора на холоду, Bi, Sn, Ti, Мо, W - при незначительном нагревании. Hg, Pb, U, V реагируют с фтором при комнат­ной температуре, Pt - при температуре тёмно-красного каления. При взаимодействии металлов с фтором образуются, как правило, высшие фториды, например UF 6 , MoF 6 , HgF 2 . Некоторые металлы (Fe, Сu, Al, Ni, Mg, Zn) реагируют с фтором с образованием защитной плёнки фторидов, препятствую­щей дальнейшей реакции.
При взаимодействии фтора с окисла­ми металлов на холоду образуются фто­риды металлов и кислород; возможно также образование оксифторидов метал­лов (например, MoO2F2). Окислы неме­таллов либо присоединяют фтор, например
SO 2 + F 2 =SO 2 F 2
либо кислород в них замещается на фтор, например
SiO 2 + 2F 2 = SiF 4 + О 2 .
Стекло очень медлен­но реагирует с фтором; в присутствии воды реакция идёт быстро. Окислы азота NO и NО 2 легко присоединяют фтор с образованием соответственно фтористого нитрозила FNO и фтористого нитрила FNО 2 . Окись углерода присоединяет фтор при нагревании с образованием фтористого карбонила:
СО + F 2 = COF 2
Гидроокиси металлов реагируют с фтором, образуя фторид металла и кислород, например
2Ва(ОН) 2 + 2F 2 = 2ВаF 2 + 2Н 2 O + О 2
Водные растворы NaOH и КОН реагиру­ют с фтором при О °С с образованием OF 2 .
Галогениды металлов или неметаллов взаимодействуют с фтором на холоду, причем фтор замешает все галогены.
Легко фторируются сульфиды, нит­риды и карбиды. Гидриды металлов образуют с фтором на холоду фторид металла и HF; аммиак (в парах) - N 2 и HF. Фтор замещает водород в кислотах или металлы в их солях, например
НNО 3 (или NaNO 3) + F 2 → FNO 3 + HF (или NaF)
в более жестких условиях фтор вытесняет кисло­род из этих соединений, образуя сульфурилфторид.
Карбонаты ще­лочных и щелочноземельных металлов реагируют с фтором при обычной температуре; при этом получаются соответствующий фто­рид, СО 2 и О 2 .
Фтор энергично реагирует с органическими веществами.

На первой стадии получения фтора выделяют фтороводород HF. Приготовление фтороводорода и фтористоводородной (плавиковой) кислоты происходит, как правило, попутно с переработкой фторапатита на фосфорные удобрения. Образующийся при сернокислотной обработке фторапатита газообразный фтороводород далее собирают, сжижают и используют для проведения электролиза. Электролизу можно подвергать как жидкую смесь HF и KF (процесс осуществляется при температуре 15-20°C), так и расплав KH 2 F 3 (при температуре 70-120°C) или расплав КНF 2 (при температуре 245-310°C). В лаборатории для приготовления небольших количеств свободного фтора можно использовать или нагревание MnF 4 , при котором происходит отщепление фтора, или нагревание смеси K 2 MnF 6 и SbF 5 .
Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жид­ким азотом) в аппаратах из никеля и сплавов на его основе, из меди, алюминия и его сплавов, латуни нержавеющей стали.

Газообразный фтор служит для фторирования UF 4 в UF 6 , применяемого для изотопов разделения урана, а также для получения трех-фтористого хлора СlF 3 (фторирующий агент), шестифтористой серы SF 6 (газо­образный изолятор в электротехнической промышленности), фторидов металлов (например, W и V). Жидкий фтор - окислитель ракет­ного топлива.
Широкое применение получили много­численные соединения фтора - фтористый водород, алюминия фторид, кремне-фториды, фторсульфоновая кислота, как рас­творители, катализаторы и реагенты для по­лучения органических соединений.
Фтор используют в производстве тефлона, других фторопластов, фторкаучуков, фторсодержащих органических веществ и материалов, которые широко применяют в технике, особенно в тех случаях, когда требуется устойчивость к агрессивным средам, высокой температуре и т.п.

Фтор по­стоянно входит в состав животных и растительных тканей; микроэлементов. В виде неорганических соединений содержится главным образом в костях животных и человека - 100-300 мг/кг; особенно много фтора в зу­бах. Кости морских животных богаче фтором по сравнению с костями наземных. Посту­пает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание фтора в которой 1-1,5 мг/л.
При недостатке фтора у человека развивается кариес зубов. Поэтому соединения фтора добавляют в зубные пасты, иногда вводят в состав питьевой воды. Избыток фтора в воде, однако, тоже вреден для здоровья. Он приводит к флюорозу - изменению структуры эмали и костной ткани, деформации костей. Высокие концентра­ции ионов фтора опасны ввиду их способ­ности к ингибированию ряда ферментативных реакций, а также к связыванию важных в биологическом отношении элементов (Р, Са, Мg и др.), нарушающему их ба­ланс в организме.
Органические производные фтора обнаружены только в некоторых расте­ниях. Основные из них - производные фторуксусной кислоты, токсич­ные как для других растений, так и для жи­вотных. Биологическая роль изучена недостаточно. Установлена связь об­мена фтора с образованием костной ткани скелета и особенно зубов. Необходимость фтора для растений не доказана.

Возможны у работающих в химической промышленности, при синте­зе фторосодержащих соединений и производстве фосфорных удобрений. Фтор раздражает дыхательные пути, вызывает ожоги кожи. При остром отравлении возникают раздражение слизистых оболочек горта­ни и бронхов, глаз, слюнотечение, носовые кровотечения; в тяжелых случаях - отек легких, поражение центр, нервной системы и др.; при хроническом - конъ­юнктивит, бронхит, пневмония, пневмо-склероз, флюороз. Характерно пораже­ние кожи типа экземы.
Первая по­мощь: промывание глаз водой, при ожо­гах кожи - орошение 70%-ным спиртом; при ингаляционном отравлении - вды­хание кислорода.
Профилактика: соблюдение правил техники безопасно­сти, ношение специальной одежды, регу­лярные медицинские осмотры, включе­ние в пищевой рацион кальция, вита­минов.

Фтору свойственны все особенности собратьев по подгруппе, однако он подобен человеку без чувства меры: все увеличено до крайности, до предела. Это объясняется прежде всего положением элемента № 9 в периодической системе и его электронной структурой. Его место в таблице Менделеева - «полюс неметаллических свойств», правый верхний угол. Атомная модель фтора: заряд ядра 9+ , два электрона расположены на внутренней оболочке, семь - на внешней. Каждый атом всегда стремится к устойчивому состоянию. Для этого ему нужно заполнить внешний электронный слой. Атом фтора в этом смысле - не исключение. Захвачен восьмой электрон, и цель достигнута - образован ион фтора с «насыщенной» внешней оболочкой.

Число присоединенных электронов показывает, что отрицательная валентность фтора равна 1- ; в отличие от прочих галогенов не может проявлять положительную валентность.

Стремление к заполнению внешнего электронного слоя до восьмиэлектронной конфигурации у фтора исключительно велико. Поэтому он обладает необычайной реакционной способностью и образует соединения почти со всеми элементами. Совсем недавно, большинство химиков считало, и на то были основания, что благородные газы не могут образовывать истинные химические соединения. Однако вскоре три из шести элементов- «затворников» не смогли устоять перед натиском удивительно агрессивного фтора. Начиная с 1962 г. получены фториды, а через них - и другие соединения криптона , ксенона и радона .

Удержать фтор от реакции очень трудно, но зачастую не легче вырвать его атомы из соединений. Здесь играет роль еще один фактор - очень малые размеры атома и иона фтора. Они примерно в полтора раза меньше, чем у хлора, и вдвое меньше, чем у йода.

Очевидно, что чем больше размеры атомов галогена, тем меньше их размещается вокруг атома молибдена . Максимально возможная валентность молибдена реализуется только в соединении с атомами фтора, малый размер которых позволяет «упаковать» молекулу наиболее плотно.

Атомы фтора обладают очень высокой электроотрицательностью, т. е. способностью притягивать электроны: при взаимодействии с кислородом фтор образует соединения, в которых кислород заряжен положительно. Горячая вода сгорает в струе фтора с образованием кислорода. Не правда ли, исключительный случай? Кислород оказался вдруг не причиной, а следствием горения.

Не только вода, но и другие обычно негорючие материалы, такие, как асбест, кирпич, многие металлы, загораются в струе фтора. Бром, йод, сера , селен , теллур , фосфор , мышьяк , сурьма , кремний , древесный уголь самовоспламеняются во фторе уже при обычной температуре, а при небольшом нагревании та же участь постигает и благородные платиновые металлы, известные своей химической пассивностью.

Поэтому не удивительно само название фтора. В переводе с греческого это слово означает «разрушающий».

Фтор или флюор?

Фтор - разрушающий - удивительно подходящее название . Однако за рубежом более распространено другое имя элемента № 9 - флюор, что в переводе с латинского означает «текучий».

Это название больше подходит не к фтору, а к некоторым его соединениям и берет свое начало от флюорита или плавикового шпата - первого соединения фтора, использованного человеком. По-видимому, еще в древности люди знали о способности этого минерала снижать температуру плавления руд и металлургических шлаков, но, естественно, не знали его состава. Флюором назвали главную составную часть этого минерала, еще неизвестный химикам элемент.

Это название настолько укоренилось в умах ученых, что логически оправданное предложение о переименовании элемента, выдвинутое в 1816 г., не нашло поддержки. А ведь в эти годы шли усиленные поиски флюора, уже было накоплено немало экспериментальных данных, подтверждавших разрушительные способности флюора и его соединений. Да и авторами предложения были не кто-нибудь, а крупнейшие ученые того времени Андрэ Ампер и Хэмфри Дэви. И все-таки фтор оставался флюором.
Жертвы? - Нет, герои

Первое упоминание о флюоре и флюорите относится к XV в.

В начале XVIII в. была открыта плавиковая кислота - водный раствор фтористого водорода , а в 1780 г. известный шведский химик Карл Вильгельм Шееле впервые высказал мысль, что в этой кислоте содержится новый активный элемент. Однако, чтобы подтвердить догадку Шееле и выделить фтор (или флюор), химикам потребовалось больше 100 лет, целый век упорной работы многих ученых из разных стран.

Сегодня мы знаем, что фтор очень токсичен, что работа с ним и его соединениями требует большой осторожности и продуманных мер защиты. Первооткрыватели фтора могли об этом только догадываться, да и то не всегда. Поэтому история открытия фтора связана с именами многих героев науки. Английские химики братья Томас и Георг Нокс пытались получить фтор из фторидов серебра и свинца . Опыты окончились трагически: Георг Нокс стал инвалидом, Томас погиб. Та же участь постигла Д. Никлеса и П. Лайета. Выдающийся химик XIX в. Хэмфри Дэви, создатель водородной теории кислот, человек, впервые получивший натрий , калий , магний , кальций , стронций и барий , доказавший элементность хлора , не смог решить проблемы получения всеразрушающего элемента. В ходе этих опытов он отравился и тяжело заболел. Ж. Гей-Люссак и Л. Тенар потеряли здоровье, так и не добившись сколько-нибудь обнадеживающих результатов.

Более удачливыми оказались А. Лавуазье, М. Фарадей, Э. Фреми. Их фтор «пощадил», но и они не добились успеха. В 1834 г. Фарадею показалось, что ему, наконец, удалось получить неуловимый газ. Но вскоре он вынужден был признать: «Я не смог получить фтор. Мои предположения, подвергаясь строгому анализу, отпадали одно за другим...» В течение 50 (!) лет этот гигант науки пытался решить проблему получения фтора, но так и не смог одолеть ее.

Неудачи преследовали ученых, однако уверенность в существовании и возможности выделения фтора крепла с каждым новым опытом. Она основывалась на многочисленных аналогиях в поведении и свойствах соединений фтора с соединениями уже известных галогенов - хлора, брома и йода .

Были на этом пути и удачи. Фреми, пытаясь с помощью электролиза извлечь фтор из фторидов, нашел способ получения безводного фтористого водорода. Каждый опыт, даже неудачный, пополнял копилку знаний об удивительном элементе и приближал день его открытия. И этот день настал. 26 июня 1886 г. французский химик Анри Муассан подверг электролизу безводный фтористый водород. При температуре - 23°С он получил на аноде новое, чрезвычайно реакционноспособное газообразное вещество. Муассану удалось собрать несколько пузырьков газа. Это был фтор!

О своем открытии Муассан сообщил Парижской академии. Моментально была создана комиссия, которая через несколько дней должна была прибыть в лабораторию Муассана, чтобы увидеть все своими глазами. Муассан тщательно подготовился к проведению повторного эксперимента. Он подверг исходный фтористый водород дополнительной очистке, и... высокопоставленная комиссия не увидела фтора. Опыт не воспроизводился, электролиза с выделением фтора не наблюдалось! Скандал?!

Но Муассану удалось найти причину. Оказалось, что лишь небольшие количества фтористого калия, содержащегося во фтористом водороде, делают его проводником электричества. Применение в первом опыте фтористого водорода без дополнительной очистки обеспечило успех: были примеси - шел электролиз. Тщательная подготовка второго опыта стала причиной неудачи.

И все-таки удача определенно сопутствовала Муассану. Вскоре ему удалось найти недорогой и надежный материал для аппаратов, в которых получается фтор. Эта проблема была не менее сложной, чем получение неподатливого элемента. Фтористый водород и фтор разрушали любую аппаратуру. Еще Дэви испытывал сосуды из кристаллической серы, угля, серебра и платины , но все эти материалы разрушались в процессе электролиза соединений фтора.

Первые граммы фтора Муассан получил в платиновом электролизере с электродами из иридиево-платинового сплава. Несмотря на низкую температуру, при которой проводился опыт, каждый грамм фтора «уничтожал» 5-6 г платины.

Платиновый сосуд Муассан заменил мёдным. Конечно, и медь подвержена действию фтора, но как алюминий защищается от воздуха окисной пленкой, так и медь «укрывалась» от фтора за пленкой непреодолимого для него фторида меди.

Электролиз до сих пор остается практически единственным методом получения фтора. С 1919 г. в качестве электролита используются расплавы бифторидов. Материалы современных электролизеров и электродов - это медь, никель , сталь, графит . Все это во много раз удешевило производство элемента № 9 и дало возможность получать его в промышленных масштабах. Однако принцип получения фтора остался тем же, что предлагали Дэви и Фарадей и впервые осуществил Муассан.

Фтор и многие его соединения представляют не только большой теоретический интерес, но и находят широкое практическое применение. Соединений фтора очень много, использование их настолько многосторонне и обширно, что для рассказа обо всем интересном, что связано с этим элементом, не хватило бы и 100 страниц. Поэтому в нашем рассказе вы встретите только самые интересные фтористые соединения, прочно вошедшие в нашу промышленность, в нашу жизнь, в наш быт и даже в наше искусство - соединения, без которых (это можно сказать без преувеличения) немыслим прогресс.

Гидрид фтора и... вода

Что общего может быть у всеразрушающего фтора и «мирной» привычной воды? Казалось бы - ничего. Но поостережемся поспешных выводов. Ведь воду можно рассматривать как гидрид кислорода, а плавиковая кислота HF - не что иное, как гидрид фтора. Итак, мы имеем дело с ближайшими химическими «родственниками» - гидридами двух сильных окислителей.

Известны гидриды всех галогенов. Их свойства изменяются закономерно, однако фтористый водород во многом ближе к воде, нежели к другим галоидоводородам. Сравните диэлектрические постоянные: для HF и H 2 O они очень близки (83,5 и 80), в то время как для гидридов брома, иода и хлора эта характеристика значительно ниже (всего 2,9 - 4,6). Температура кипения HF +19°С, тогда как HI, HBr и HCl переходят в газообразное состояние уже при минусовых температурах.

Одно из природных соединений фтора - минерал криолит - называют нетающим льдом. Действительно, огромные кристаллы криолита очень похожи на ледяные глыбы.

В одном из рассказов писателя-фантаста И. А. Ефремова описана встреча в космосе с обитателями планеты, на которой во всех жизненно важных окислительных процессах участвует фтор, а не кислород. Если такая планета существует, то можно не сомневаться, что ее обитатели утоляют жажду... фтористым водородом.

На Земле фтористый водород служит другим целям

Нюрнбергский художник Швангард еще в 1670 г. смешивал плавиковый шпат с серной кислотой и этой смесью наносил рисунки на стекло. Швангард не знал, что компоненты его смеси реагируют между собой, а «рисует» продукт реакции. Это не помешало внедрению открытия Швангарда. Пользуются им и в наши дни. На стеклянный сосуд наносится тонкий слой парафина. Художник рисует по этому слою, а затем опускает сосуд в раствор плавиковой кислоты. В тех местах, где неуязвимая для фтористого водорода парафиновая «броня» снята, кислота разъедает стекло, и рисунок навсегда запечатлевается на нем. Это старейшее применение фтористого водорода, но отнюдь не единственное.

Достаточно сказать, что менее чем через 20 лет после создания первых промышленных установок для получения фтористого водорода его годовое производство в США достигло 125 тыс. т. Стекольная, пищевая, нефтяная, атомная, металлургическая, химическая, авиационная, бумажная - вот далеко не полный перечень тех отраслей промышленности, где фтористый водород находит самое широкое применение. Фтористый водород способен изменять скорость многих реакций и используется в качестве катализатора самых разнообразных химических превращений. Одно из основных тенденций современной химии - проведение реакций в неводных средах. Наиболее интересным и уже широко применяющимся неводным растворителем стал фтористый водород.

Фтористый водород - очень агрессивный и опасный реагент, но он незаменим во многих отраслях современной индустрии. Поэтому приемы обращения с ним настолько усовершенствованы, что для грамотного химика наших дней фтористый водород стал почти так же безопасен, как для обитателей неведомой фторной планеты.

Искусственное добавление фтора к воде в тех местах, где обнаруживается его недостаток, приводит к устранению новых случаев заболевания и уменьшению кариеса у больных людей. Тут же оговоримся - большой избыток фтора в воде вызывает острое заболевание - флюороз (пятнистая эмаль). Извечная дилемма медицины: большие дозы - яд, малые - лекарство .

Во многих местах построены установки для искусственного фторирования воды. Особенно эффективен этот способ профилактики кариеса у детей. Поэтому в некоторых странах соединения фтора (в исключительно малых дозах) добавляют в. молоко.

Существует предположение о том, что фтор необходим для развития живой клетки и что он входит вместе с фосфором в состав животных и растительных тканей.

Фтор находит широкое применение при синтезе различных медицинских препаратов. Фторорганические соединения успешно применяются для лечения болезней щитовидной железы, особенно базедовой болезни, хронических форм диабета, бронхиальных и ревматических заболеваний, глаукомы и рака. Они также пригодны для профилактики и лечения малярии и служат хорошим средством против стрептококковых и стафиллококковых инфекций. Некоторые фторорганические препараты - надежные обезболивающие средства.

Фтор и жизнь - именно этот раздел химии фтора достоин наибольшего развития, и будущее - за ним. Фтор и смерть? Можно и нужно работать и в этой области, но для того, чтобы получать не смертоносные отравляющие вещества, а различные препараты для борьбы с грызунами и другими сельскохозяйственными вредителями. Такое применение находят, например, монофторуксусная кислота и фторацетат натрия.

Как приятно бывает в жаркий летний день достать из холодильника бутылку ледяной минеральной воды...

В большинстве холодильников - и промышленных, и домашних - хладоагентом, веществом, создающим холод, работает фторорганическая жидкость - фреон.

Фреоны получаются при замене атомов водорода в молекулах простейших органических соединений на фтор или фтор и хлор. Простейший углеводород - метан CH 4 . Если все атомы водорода в метане заменить на фтор, то образуется тетрафторметан CF 4 (фреон-14), а если фтором замещается только два атома водорода, а два другие - хлором, то получится дифтордихлорметан CF 2 Cl 2 (фреон-12).

В домашних холодильниках обычно работает фреон-12. Это бесцветный, нерастворимый в воде и негорючий газ с запахом, похожим на запах эфира. Фреоны 11 и 12 работают также в установках для кондиционирования воздуха. В «шкале вредности», составленной для всех применяемых хладоагентов, фреоны занимают последние места. Они даже безвреднее «сухого льда» - твердой двуокиси углерода.

Фреоны исключительно устойчивы, химически инертны. Здесь, как и в случае фторопластов, мы сталкиваемся с тем же удивительным явлением: с помощью наиболее активного элемента - фтора - удается получить химически очень пассивные вещества. Особенно устойчивы они к действию окислителей, и это не удивительно - ведь их атомы углерода находятся в высшей степени окисления. Поэтому фторуглероды (и, в частности, фреоны) не горят даже в атмосфере чистого кислорода. При сильном нагревании происходит деструкция - распад молекул, но не окисление их. Эти свойства позволяют применять фреоны еще в ряде случаев: их используют как пламегасители, инертные растворители, промежуточные продукты для получения пластмасс и смазочных материалов.

Сейчас известны тысячи фторорганических соединений различных типов. Многие из них применяются в важнейших отраслях современной техники. Во фреонах фтор работает на «индустрию холода», но с его помощью можно получать и очень высокие температуры. Сравните это цифры: температура кислородо-водородного пламени 2800°С, кислородоацетиленового 3500°С, при горении водорода во фторе развивается температура 3700°С. Эта реакция уже нашла практическое применение во фтористоводородных горелках для резания металла. Кроме того, известны горелки, работающие на фторхлоридах (соединения фтора с хлором), а также на смеси трехфтористого азота и водорода. Последняя смесь особенно удобна, так как трехфтористый азот не вызывает коррозии аппаратуры. Естественно, во всех этих реакциях фтор и его соединения играют роль окислителя. Можно использовать их и в качестве окислителя в жидкостных реактивных двигателях. В пользу реакции с участием фтора и его соединений говорит многое. Развивается более высокая температура - значит, и давление в камере сгорания будет больше, возрастет тяга реактивного двигателя. Твердых продуктов горения в результате таких реакций не образуется - значит, опасность забивки сопел и разрыва двигателя в этом случае также не грозит.

Но у фтора, как составной части ракетного топлива, есть ряд крупных недостатков. Он очень токсичен, коррозионно-активен и имеет очень низкую температуру кипения. Сохранить его в виде жидкости труднее, чем другие газы. Поэтому более приемлемы здесь соединения фтора с кислородом и галогенами.

Некоторые из этих соединений по своим окислительным свойствам не уступают жидкому фтору, но имеют огромное преимущество: в обычных условиях это или жидкости, или же легко сжижаемые газы.

Температура кипения Критическая точка Уд. теплота плавления

(F-F) 0,51 кДж/моль

Уд. теплота испарения

6,54 (F-F) кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

моноклинная

Параметры решётки Прочие характеристики Теплопроводность

(300 K) 0,028 Вт/(м·К)

Номер CAS
9
2s 2 2p 5

История

Как один из атомов плавиковой кислоты элемент фтор был предсказан в 1810 году , а выделен в свободном виде лишь 76 лет спустя Анри Муассаном в 1886 году электролизом жидкого безводного фтористого водорода , содержащего примесь кислого фторида калия KHF 2 .

Происхождение названия

Содержанием в почве фтор обязан вулканическим газам , за счёт того, что в их состав обычно входит большое количество фтороводорода .

Изотопный состав

Фтор является моноизотопным элементом, так как в природе существует только один стабильный изотоп фтора 19 F. Известны ещё 17 радиоактивных изотопов фтора с массовым числом от 14 до 31, и один ядерный изомер - 18 F m . Самым долгоживущим из радиоактивных изотопов фтора является 18 F с периодом полураспада 109,771 минуты, важный источник позитронов , использующийся в позитрон-эмиссионной томографии .

Ядерные свойства изотопов фтора

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин Ядерный магнитный момент
17 F 17,0020952 64,5 c β + -распад в 17 O 5/2 4.722
18 F 18,000938 1,83 часа β + -распад в 18 O 1
19 F 18,99840322 Стабилен - 1/2 2.629
20 F 19,9999813 11 c β − -распад в 20 Ne 2 2.094
21 F 20,999949 4,2 c β − -распад в 21 Ne 5/2
22 F 22,00300 4,23 c β − -распад в 22 Ne 4
23 F 23,00357 2,2 c β − -распад в 23 Ne 5/2

Магнитные свойства ядер

Ядра изотопа 19 F имеют полуцелый спин, поэтому возможно применение этих ядер для ЯМР -исследований молекул. Спектры ЯМР- 19 F являются достаточно характеристичными для фторорганических соединений.

Электронное строение

Электронная конфигурация атома фтора следующая: 1s 2 2s 2 2p 5 . Атомы фтора в соединениях могут проявлять степень окисления, равную −1. Положительные степени окисления в соединениях не реализуются, так как фтор является самым электроотрицательным элементом.

Квантовохимический терм атома фтора - 2 P 3/2 .

Строение молекулы

С точки зрения теории молекулярных орбиталей, строение двухатомной молекулы фтора можно охарактеризовать следующей диаграммой. В молекуле присутствует 4 связывающих орбитали и 3 разрыхляющих. Порядок связи в молекуле равен 1.

Кристаллическая решётка

Фтор образует две кристаллические модификации, стабильные при атмосферном давлении:

Получение

Промышленный способ получения фтора включает добычу и обогащение флюоритовых руд, сернокислотное разложение их концентрата с образованием безводного и его электролитическое разложение.

Для лабораторного получения фтора используют разложение некоторых соединений, но все они не встречаются в природе в достаточном количестве и их получают с помощью свободного фтора.

Лабораторный метод

\mathsf{ 2K_2MnF_6 + 4SbF_5 \rightarrow 4KSbF_6 + 2MnF_3 + F_2 \uparrow }

Хотя этот метод не имеет практического применения, он демонстрирует, что электролиз необязателен, кроме того, все компоненты для данных реакций могут быть получены без использования газообразного фтора.

Также для лабораторного получения фтора можно использовать нагрев фторида кобальта (III) до 300 °С, разложение фторидов серебра (слишком дорого) и некоторые другие способы.

Промышленный метод

Промышленное производство фтора осуществляется электролизом расплава кислого фторида калия KF·2HF (часто с добавлениями фторида лития), который образуется при насыщении расплава KF фтористым водородом до содержания 40-41 % HF. Процесс электролиза проводят при температурах около 100 °C в стальных электролизёрах со стальным катодом и угольным анодом .

Физические свойства

Бледно-жёлтый газ, в малых концентрациях запах напоминает одновременно озон и хлор , очень агрессивен и ядовит .

Фтор имеет аномально низкую температуру кипения (плавления). Это связано с тем, что фтор не имеет d-подуровня и не способен образовывать полуторные связи, в отличие от остальных галогенов (кратность связи в остальных галогенах примерно 1,1) .

Химические свойства

\mathsf{ 2F_2 + 2H_2O \rightarrow 4HF \uparrow + O_2 \uparrow } \mathsf{ Pt + 2F_2 \ \xrightarrow{350-400^oC}\ PtF_4 }

К реакциям, в которых фтор формально является восстановителем, относятся реакции разложения высших фторидов, например:

\mathsf{ 2CoF_3 \rightarrow 2CoF_2 + F_2 \uparrow } \mathsf{ 2MnF_4 \rightarrow 2MnF_3 + F_2 \uparrow }

Фтор также способен окислять в электрическом разряде кислород , образуя фторид кислорода OF 2 и диоксидифторид O 2 F 2 .

Во всех соединениях фтор проявляет степень окисления −1. Чтобы фтор проявлял положительную степень окисления, требуется создание эксимерных молекул или иные экстремальные условия. Это требует искусственной ионизации атомов фтора .

Хранение

Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монель-металл), из меди , алюминия и его сплавов, латуни , нержавеющей стали (это возможно потому, что эти металлы и сплавы покрываются непреодолимой для фтора пленкой фторидов ).

Применение

Фтор используется для получения:

  • Фреонов - широко распространенных хладагентов .
  • Фторопластов - химически инертных полимеров.
  • Элегаза SF 6 - газообразного изолятора, применяемого в высоковольтной электротехнике.
  • Гексафторида урана UF 6 , применяемого для разделения изотопов урана в ядерной промышленности.
  • Гексафтороалюмината натрия - электролита для получения алюминия электролизом .
  • Фторидов металлов (например, W и V), которые обладают некоторыми полезными свойствами.

Ракетная техника

Фтор и некоторые его соединения являются сильными окислителями, поэтому могут применяться в качестве окислителя в ракетных топливах . Очень высокая эффективность фтора вызывала значительный интерес к нему и его соединениям. На заре космической эры в СССР и других странах существовали программы исследования фторсодержащих ракетных топлив. Однако продукты горения с фторсодержащими окислителями токсичны. Поэтому топлива на основе фтора не получили распространения в современной ракетной технике.

Применение в медицине

Фторированные углеводороды (напр., перфтордекалин) применяются в медицине как кровезаменители. Существует множество лекарств, содержащих фтор в структуре (фторотан, фторурацил, флуоксетин, галоперидол и др.).

Биологическая и физиологическая роль

Фтор является жизненно необходимым для организма элементом. В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита - Ca 5 F(PO 4) 3 . При недостаточном (менее 0,5 мг/литр питьевой воды) или избыточном (более 1 мг/литр) потреблении фтора организмом могут развиваться заболевания зубов: кариес и флюороз (крапчатость эмали) и остеосаркома , соответственно .

Для профилактики кариеса рекомендуется использовать зубные пасты с добавками фторидов (натрия и/или олова) или употреблять фторированную воду (до концентрации 1 мг/л), или применять местные аппликации 1-2 % раствором фторида натрия или фторида олова. Такие действия могут сократить вероятность появления кариеса на 30-50 % .

Предельно допустимая концентрация связанного фтора в воздухе промышленных помещений равна 0,0005 мг/литр воздуха.

Токсикология

См. также

Напишите отзыв о статье "Фтор"

Литература

  • Рысс И. Г. Химия фтора и его неорганических соединений. М. Госхимиздат, 1966 г. - 718 с.
  • Некрасов Б. В. Основы общей химии. (издание третье, том 1) М. Химия, 1973 г. - 656 с.
  • L. Pauling, I. Keaveny, and A.B. Robinson, J. Solid State Chem., 1970, 2, p. 225. англ. {{{1}}} - Подробнее о кристаллической структуре фтора.

Примечания

  1. . Проверено 14 марта 2013. .
  2. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  3. Химическая энциклопедия / Редкол.: Зефиров Н.С. и др.. - М .: Большая Российская энциклопедия, 1998. - Т. 5. - 783 с. - ISBN 5-85270-310-9 .
  4. на сайте ИЮПАК
  5. Главным образом в эмали зубов
  6. Journal of Solid State Chemistry, Vol. 2, Issue 2, 1970, P. 225-227.
  7. J. Chem. Phys. 49, 1902 (1968)
  8. Гринвуд Н., Эрншо А. «Химия элементов» т. 2, М.: БИНОМ. Лаборатория знаний, 2008 стр. 147-148, 169 - химический синтез фтора
  9. Ахметов Н. С. «Общая и неорганическая химия».
  10. Энциклопедический словарь юного химика. Для среднего и старшего возраста. Москва, Педагогика-Пресс. 1999 год.
  11. По данным National Toxicology Program
  12. в виде фторидов и фторорганических соединений
  13. Н. В. Лазарев, И. Д. Гадаскина «Вредные вещества в промышленности» Том 3, страница 19.

Ссылки

  • // Вестник РАН , 1997, том 67, N 11, с. 998-1013.

Отрывок, характеризующий Фтор

Если цель русских состояла в том, чтобы отрезать и взять в плен Наполеона и маршалов, и цель эта не только не была достигнута, и все попытки к достижению этой цели всякий раз были разрушены самым постыдным образом, то последний период кампании совершенно справедливо представляется французами рядом побед и совершенно несправедливо представляется русскими историками победоносным.
Русские военные историки, настолько, насколько для них обязательна логика, невольно приходят к этому заключению и, несмотря на лирические воззвания о мужестве и преданности и т. д., должны невольно признаться, что отступление французов из Москвы есть ряд побед Наполеона и поражений Кутузова.
Но, оставив совершенно в стороне народное самолюбие, чувствуется, что заключение это само в себе заключает противуречие, так как ряд побед французов привел их к совершенному уничтожению, а ряд поражений русских привел их к полному уничтожению врага и очищению своего отечества.
Источник этого противуречия лежит в том, что историками, изучающими события по письмам государей и генералов, по реляциям, рапортам, планам и т. п., предположена ложная, никогда не существовавшая цель последнего периода войны 1812 года, – цель, будто бы состоявшая в том, чтобы отрезать и поймать Наполеона с маршалами и армией.
Цели этой никогда не было и не могло быть, потому что она не имела смысла, и достижение ее было совершенно невозможно.
Цель эта не имела никакого смысла, во первых, потому, что расстроенная армия Наполеона со всей возможной быстротой бежала из России, то есть исполняла то самое, что мог желать всякий русский. Для чего же было делать различные операции над французами, которые бежали так быстро, как только они могли?
Во вторых, бессмысленно было становиться на дороге людей, всю свою энергию направивших на бегство.
В третьих, бессмысленно было терять свои войска для уничтожения французских армий, уничтожавшихся без внешних причин в такой прогрессии, что без всякого загораживания пути они не могли перевести через границу больше того, что они перевели в декабре месяце, то есть одну сотую всего войска.
В четвертых, бессмысленно было желание взять в плен императора, королей, герцогов – людей, плен которых в высшей степени затруднил бы действия русских, как то признавали самые искусные дипломаты того времени (J. Maistre и другие). Еще бессмысленнее было желание взять корпуса французов, когда свои войска растаяли наполовину до Красного, а к корпусам пленных надо было отделять дивизии конвоя, и когда свои солдаты не всегда получали полный провиант и забранные уже пленные мерли с голода.
Весь глубокомысленный план о том, чтобы отрезать и поймать Наполеона с армией, был подобен тому плану огородника, который, выгоняя из огорода потоптавшую его гряды скотину, забежал бы к воротам и стал бы по голове бить эту скотину. Одно, что можно бы было сказать в оправдание огородника, было бы то, что он очень рассердился. Но это нельзя было даже сказать про составителей проекта, потому что не они пострадали от потоптанных гряд.
Но, кроме того, что отрезывание Наполеона с армией было бессмысленно, оно было невозможно.
Невозможно это было, во первых, потому что, так как из опыта видно, что движение колонн на пяти верстах в одном сражении никогда не совпадает с планами, то вероятность того, чтобы Чичагов, Кутузов и Витгенштейн сошлись вовремя в назначенное место, была столь ничтожна, что она равнялась невозможности, как то и думал Кутузов, еще при получении плана сказавший, что диверсии на большие расстояния не приносят желаемых результатов.
Во вторых, невозможно было потому, что, для того чтобы парализировать ту силу инерции, с которой двигалось назад войско Наполеона, надо было без сравнения большие войска, чем те, которые имели русские.
В третьих, невозможно это было потому, что военное слово отрезать не имеет никакого смысла. Отрезать можно кусок хлеба, но не армию. Отрезать армию – перегородить ей дорогу – никак нельзя, ибо места кругом всегда много, где можно обойти, и есть ночь, во время которой ничего не видно, в чем могли бы убедиться военные ученые хоть из примеров Красного и Березины. Взять же в плен никак нельзя без того, чтобы тот, кого берут в плен, на это не согласился, как нельзя поймать ласточку, хотя и можно взять ее, когда она сядет на руку. Взять в плен можно того, кто сдается, как немцы, по правилам стратегии и тактики. Но французские войска совершенно справедливо не находили этого удобным, так как одинаковая голодная и холодная смерть ожидала их на бегстве и в плену.
В четвертых же, и главное, это было невозможно потому, что никогда, с тех пор как существует мир, не было войны при тех страшных условиях, при которых она происходила в 1812 году, и русские войска в преследовании французов напрягли все свои силы и не могли сделать большего, не уничтожившись сами.
В движении русской армии от Тарутина до Красного выбыло пятьдесят тысяч больными и отсталыми, то есть число, равное населению большого губернского города. Половина людей выбыла из армии без сражений.
И об этом то периоде кампании, когда войска без сапог и шуб, с неполным провиантом, без водки, по месяцам ночуют в снегу и при пятнадцати градусах мороза; когда дня только семь и восемь часов, а остальное ночь, во время которой не может быть влияния дисциплины; когда, не так как в сраженье, на несколько часов только люди вводятся в область смерти, где уже нет дисциплины, а когда люди по месяцам живут, всякую минуту борясь с смертью от голода и холода; когда в месяц погибает половина армии, – об этом то периоде кампании нам рассказывают историки, как Милорадович должен был сделать фланговый марш туда то, а Тормасов туда то и как Чичагов должен был передвинуться туда то (передвинуться выше колена в снегу), и как тот опрокинул и отрезал, и т. д., и т. д.
Русские, умиравшие наполовину, сделали все, что можно сделать и должно было сделать для достижения достойной народа цели, и не виноваты в том, что другие русские люди, сидевшие в теплых комнатах, предполагали сделать то, что было невозможно.
Все это странное, непонятное теперь противоречие факта с описанием истории происходит только оттого, что историки, писавшие об этом событии, писали историю прекрасных чувств и слов разных генералов, а не историю событий.
Для них кажутся очень занимательны слова Милорадовича, награды, которые получил тот и этот генерал, и их предположения; а вопрос о тех пятидесяти тысячах, которые остались по госпиталям и могилам, даже не интересует их, потому что не подлежит их изучению.
А между тем стоит только отвернуться от изучения рапортов и генеральных планов, а вникнуть в движение тех сотен тысяч людей, принимавших прямое, непосредственное участие в событии, и все, казавшиеся прежде неразрешимыми, вопросы вдруг с необыкновенной легкостью и простотой получают несомненное разрешение.
Цель отрезывания Наполеона с армией никогда не существовала, кроме как в воображении десятка людей. Она не могла существовать, потому что она была бессмысленна, и достижение ее было невозможно.
Цель народа была одна: очистить свою землю от нашествия. Цель эта достигалась, во первых, сама собою, так как французы бежали, и потому следовало только не останавливать это движение. Во вторых, цель эта достигалась действиями народной войны, уничтожавшей французов, и, в третьих, тем, что большая русская армия шла следом за французами, готовая употребить силу в случае остановки движения французов.
Русская армия должна была действовать, как кнут на бегущее животное. И опытный погонщик знал, что самое выгодное держать кнут поднятым, угрожая им, а не по голове стегать бегущее животное.

Когда человек видит умирающее животное, ужас охватывает его: то, что есть он сам, – сущность его, в его глазах очевидно уничтожается – перестает быть. Но когда умирающее есть человек, и человек любимый – ощущаемый, тогда, кроме ужаса перед уничтожением жизни, чувствуется разрыв и духовная рана, которая, так же как и рана физическая, иногда убивает, иногда залечивается, но всегда болит и боится внешнего раздражающего прикосновения.
После смерти князя Андрея Наташа и княжна Марья одинаково чувствовали это. Они, нравственно согнувшись и зажмурившись от грозного, нависшего над ними облака смерти, не смели взглянуть в лицо жизни. Они осторожно берегли свои открытые раны от оскорбительных, болезненных прикосновений. Все: быстро проехавший экипаж по улице, напоминание об обеде, вопрос девушки о платье, которое надо приготовить; еще хуже, слово неискреннего, слабого участия болезненно раздражало рану, казалось оскорблением и нарушало ту необходимую тишину, в которой они обе старались прислушиваться к незамолкшему еще в их воображении страшному, строгому хору, и мешало вглядываться в те таинственные бесконечные дали, которые на мгновение открылись перед ними.
Только вдвоем им было не оскорбительно и не больно. Они мало говорили между собой. Ежели они говорили, то о самых незначительных предметах. И та и другая одинаково избегали упоминания о чем нибудь, имеющем отношение к будущему.
Признавать возможность будущего казалось им оскорблением его памяти. Еще осторожнее они обходили в своих разговорах все то, что могло иметь отношение к умершему. Им казалось, что то, что они пережили и перечувствовали, не могло быть выражено словами. Им казалось, что всякое упоминание словами о подробностях его жизни нарушало величие и святыню совершившегося в их глазах таинства.
Беспрестанные воздержания речи, постоянное старательное обхождение всего того, что могло навести на слово о нем: эти остановки с разных сторон на границе того, чего нельзя было говорить, еще чище и яснее выставляли перед их воображением то, что они чувствовали.

Но чистая, полная печаль так же невозможна, как чистая и полная радость. Княжна Марья, по своему положению одной независимой хозяйки своей судьбы, опекунши и воспитательницы племянника, первая была вызвана жизнью из того мира печали, в котором она жила первые две недели. Она получила письма от родных, на которые надо было отвечать; комната, в которую поместили Николеньку, была сыра, и он стал кашлять. Алпатыч приехал в Ярославль с отчетами о делах и с предложениями и советами переехать в Москву в Вздвиженский дом, который остался цел и требовал только небольших починок. Жизнь не останавливалась, и надо было жить. Как ни тяжело было княжне Марье выйти из того мира уединенного созерцания, в котором она жила до сих пор, как ни жалко и как будто совестно было покинуть Наташу одну, – заботы жизни требовали ее участия, и она невольно отдалась им. Она поверяла счеты с Алпатычем, советовалась с Десалем о племяннике и делала распоряжения и приготовления для своего переезда в Москву.
Наташа оставалась одна и с тех пор, как княжна Марья стала заниматься приготовлениями к отъезду, избегала и ее.
Княжна Марья предложила графине отпустить с собой Наташу в Москву, и мать и отец радостно согласились на это предложение, с каждым днем замечая упадок физических сил дочери и полагая для нее полезным и перемену места, и помощь московских врачей.
– Я никуда не поеду, – отвечала Наташа, когда ей сделали это предложение, – только, пожалуйста, оставьте меня, – сказала она и выбежала из комнаты, с трудом удерживая слезы не столько горя, сколько досады и озлобления.
После того как она почувствовала себя покинутой княжной Марьей и одинокой в своем горе, Наташа большую часть времени, одна в своей комнате, сидела с ногами в углу дивана, и, что нибудь разрывая или переминая своими тонкими, напряженными пальцами, упорным, неподвижным взглядом смотрела на то, на чем останавливались глаза. Уединение это изнуряло, мучило ее; но оно было для нее необходимо. Как только кто нибудь входил к ней, она быстро вставала, изменяла положение и выражение взгляда и бралась за книгу или шитье, очевидно с нетерпением ожидая ухода того, кто помешал ей.
Ей все казалось, что она вот вот сейчас поймет, проникнет то, на что с страшным, непосильным ей вопросом устремлен был ее душевный взгляд.
В конце декабря, в черном шерстяном платье, с небрежно связанной пучком косой, худая и бледная, Наташа сидела с ногами в углу дивана, напряженно комкая и распуская концы пояса, и смотрела на угол двери.
Она смотрела туда, куда ушел он, на ту сторону жизни. И та сторона жизни, о которой она прежде никогда не думала, которая прежде ей казалась такою далекою, невероятною, теперь была ей ближе и роднее, понятнее, чем эта сторона жизни, в которой все было или пустота и разрушение, или страдание и оскорбление.
Она смотрела туда, где она знала, что был он; но она не могла его видеть иначе, как таким, каким он был здесь. Она видела его опять таким же, каким он был в Мытищах, у Троицы, в Ярославле.
Она видела его лицо, слышала его голос и повторяла его слова и свои слова, сказанные ему, и иногда придумывала за себя и за него новые слова, которые тогда могли бы быть сказаны.
Вот он лежит на кресле в своей бархатной шубке, облокотив голову на худую, бледную руку. Грудь его страшно низка и плечи подняты. Губы твердо сжаты, глаза блестят, и на бледном лбу вспрыгивает и исчезает морщина. Одна нога его чуть заметно быстро дрожит. Наташа знает, что он борется с мучительной болью. «Что такое эта боль? Зачем боль? Что он чувствует? Как у него болит!» – думает Наташа. Он заметил ее вниманье, поднял глаза и, не улыбаясь, стал говорить.
«Одно ужасно, – сказал он, – это связать себя навеки с страдающим человеком. Это вечное мученье». И он испытующим взглядом – Наташа видела теперь этот взгляд – посмотрел на нее. Наташа, как и всегда, ответила тогда прежде, чем успела подумать о том, что она отвечает; она сказала: «Это не может так продолжаться, этого не будет, вы будете здоровы – совсем».
Она теперь сначала видела его и переживала теперь все то, что она чувствовала тогда. Она вспомнила продолжительный, грустный, строгий взгляд его при этих словах и поняла значение упрека и отчаяния этого продолжительного взгляда.
«Я согласилась, – говорила себе теперь Наташа, – что было бы ужасно, если б он остался всегда страдающим. Я сказала это тогда так только потому, что для него это было бы ужасно, а он понял это иначе. Он подумал, что это для меня ужасно бы было. Он тогда еще хотел жить – боялся смерти. И я так грубо, глупо сказала ему. Я не думала этого. Я думала совсем другое. Если бы я сказала то, что думала, я бы сказала: пускай бы он умирал, все время умирал бы перед моими глазами, я была бы счастлива в сравнении с тем, что я теперь. Теперь… Ничего, никого нет. Знал ли он это? Нет. Не знал и никогда не узнает. И теперь никогда, никогда уже нельзя поправить этого». И опять он говорил ей те же слова, но теперь в воображении своем Наташа отвечала ему иначе. Она останавливала его и говорила: «Ужасно для вас, но не для меня. Вы знайте, что мне без вас нет ничего в жизни, и страдать с вами для меня лучшее счастие». И он брал ее руку и жал ее так, как он жал ее в тот страшный вечер, за четыре дня перед смертью. И в воображении своем она говорила ему еще другие нежные, любовные речи, которые она могла бы сказать тогда, которые она говорила теперь. «Я люблю тебя… тебя… люблю, люблю…» – говорила она, судорожно сжимая руки, стискивая зубы с ожесточенным усилием.

ФТОР (лат. Fluorum), F, химический элемент с атомным номером 9, атомная масса 18,998403. Природный фтор состоит из одного стабильного нуклида 19 F. Конфигурация внешнего электронного слоя 2s 2 p 5 . В соединениях проявляет только степень окисления –1 (валентность I). Фтор расположен во втором периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам .

Радиус нейтрального атома фтора 0,064 нм, радиус иона F – 0,115 (2), 0,116 (3), 0,117 (4) и 0,119 (6) нм (в скобках указано значение координационного числа). Энергии последовательной ионизации нейтрального атома фтора равны, соответственно, 17,422, 34,987, 62,66, 87,2 и 114,2 эВ. Сродство к электрону 3,448 эВ (самое большое среди атомов всех элементов). По шкале Полинга электроотрицательность фтора 4 (самое высокое значение среди всех элементов). Фтор — самый активный неметалл.

В свободном виде фтор — бесцветный газ с резким удушливым запахом.

Свойства: при обычных условиях фтор — газ (плотность 1,693 кг/м 3) с резким запахом. Температура кипения –188,14°C, температура плавления –219,62°C. В твердом состоянии образует две модификации: a -форму, существующую от температуры плавления до –227,60°C, и b -форму, устойчивую при температурах, более низких, чем –227,60°C.

Как и другие галогены, фтор существует в виде двухатомных молекул F 2 . Межъядерное расстояние в молекуле 0,14165 нм. Молекулу F 2 характеризует аномально низкая энергия диссоциации на атомы (158 кДж/моль), что, в частности, обусловливает высокую реакционную способность фтора.

Химическая активность фтора чрезвычайно велика. Из всех элементов со фтором не образуют фторидов только три легких инертных газа — гелий, неон и аргон. Во всех соединениях фтор проявляет только одну степень окисления –1.

Со многими простыми и сложными веществами фтор реагирует напрямую. Так, при контакте с водой фтор реагирует с ней (часто говорят, что «вода горит во фторе»):

2F 2 + 2H 2 O = 4HF + O 2 .

Фтор реагирует со взрывом при простом контакте с водородом (H) :

H 2 + F 2 = 2HF.

При этом образуется газ фтороводород HF, неограниченно растворимый в воде с образованием сравнительно слабой плавиковой кислоты.

Фтор вступает во взаимодействие с большинством неметаллов. Так, при реакции фтора с графитом образуются соединения общей формулы CF x , при реакции фтора с кремнием (Si) — фторид SiF 4 , с бором — трифторид BF 3 . При взаимодействии фтора с серой (S) образуются соединения SF 6 и SF 4 и т. д.

Известно большое число соединений фтора с другими галогенами, например, BrF 3 , IF 7 , ClF, ClF 3 и другие, причем бром (Br) и иод (I) воспламеняются в атмосфере фтора при обычной температуре, а хлор (Cl) взаимодействует с фтором при нагревании до 200-250°С.

Не реагируют со фтором непосредственно, кроме указанных инертных газов , также азот (N) , кислород (O) , алмаз, углекислый и угарный газы.

Косвенным путем получен трифторид азота NF 3 и фториды кислорода О 2 F 2 и OF 2 , в которых кислород имеет необычные степени окисления +1 и +2.

При взаимодействии фтора с углеводородами происходит их деструкция, сопровождающаяся получением фторуглеводородов различного состава.

При небольшом нагревании (100-250°C) фтор реагирует с серебром (Ag) , ванадием (V) , рением (Re) и осмием (Os) . С золотом (Au) , титаном (Ti) , ниобием (Nb) , хромом (Cr) и некоторыми другими металлами реакция с участием фтора начинает протекать при температуре выше 300-350°C. С теми металлами, фториды которых нелетучи (алюминий (Al) , железо (Fe) , медь (Cu) и др.), фтор с заметной скоростью реагирует при температуре выше 400-500°C.

Некоторые высшие фториды металлов, например, гексафторид урана UF 6 , получают действуя фтором или таким фторирующим агентом, как BrF 3 , на низшие галогениды, например:

UF 4 + F 2 = UF 6

Следует отметить, что уже упоминавшейся плавиковой кислоте HF соответствуют не только средние фториды типа NaF или СаF 2 , но и кислые фториды — гидрофториды типа NaHF 2 и КНF 2 .

Синтезировано также большое число различных фторорганических соединений, в том числе и знаменитый тефлон — материал, представляющий собой полимер тетрафторэтилена.

История открытия: история открытия фтора связана с минералом флюоритом, или плавиковым шпатом. Состав этого минерала, как сейчас известно, отвечает формуле CaF 2 , и он представляет собой первое содержащее фтор вещество, которое начал использовать человек. В давние времена было отмечено, что если флюорит добавить при выплавке металла к руде, то температура плавления руды и шлаков понижается, что значительно облегчает проведение процесса (отсюда название минерала — от лат. fluo — теку).

В 1771 году обработкой флюорита серной кислотой шведский химик К. Шееле приготовил кислоту, которую он назвал «плавиковой». Французский ученый А. Лавуазье предположил, что в состав этой кислоты входит новый химический элемент, который он предложил назвать «флуорем» (Лавуазье считал, что плавиковая кислота — это соединение флуория с кислородом, ведь, по мнению Лавуазье, все кислоты должны содержать кислород). Однако выделить новый элемент он не смог.

За новым элементом укрепилось название «флюор», которое отражено и в его латинском названии. Но длительные попытки выделить этот элемент в свободном виде успеха не имели. Многие ученые, пытавшиеся получить его в свободном виде, погибли при проведении таких опытов или стали инвалидами. Это и английские химики братья Т. и Г. Ноксы, и французы Ж.-Л. Гей-Люссак и Л. Ж. Тенар, и многие другие. Сам Г. Дэви, первым получивший в свободном виде натрий (Na) , калий (K) , кальций (Ca) и другие элементы, в результате экспериментов по получению фтора электролизом отравился и тяжело заболел. Вероятно, под впечатлением всех этих неудач в 1816 году для нового элемента было предложено хотя и сходное по звучанию, но совершенно другое по смыслу название — фтор (от греч. phtoros — разрушение, гибель). Это название элемента принято только в русском языке, французы и немцы продолжают называть фтор fluor, англичане — fluorine.

Получить фтор в свободном виде не смог и такой выдающийся ученый, как М. Фарадей. Только в 1886 году французский химик А. Муассан, используя электролиз жидкого фтороводорода HF, охлажденного до температуры –23°C (в жидкости должно содержаться немного фторида калия KF, который обеспечивает ее электропроводимость), смог на аноде получить первую порцию нового, чрезвычайно реакционноспособного газа. В первых опытах для получения фтора Муассан использовал очень дорогой электролизер, изготовленный из платины (Pt) и иридия (Ir) . При этом каждый грамм полученного фтора «съедал» до 6 г платины. Позднее Муассан стал использовать значительно более дешевый медный электролизер. Фтор реагирует с медью (Cu) , но при реакции образуется тончайшая пленка фторида, которая препятствует дальнейшему разрушению металла.

Получение: на первой стадии получения фтора выделяют фтороводород HF. Приготовление фтороводорода и фтористоводородной (плавиковой) кислоты происходит, как правило, попутно с переработкой фторапатита на фосфорные удобрения. Образующийся при сернокислотной обработке фторапатита газообразный фтороводород далее собирают, сжижают и используют для проведения электролиза. Электролизу можно подвергать как жидкую смесь HF и KF (процесс осуществляется при температуре 15-20°C), так и расплав KH 2 F 3 (при температуре 70-120°C) или расплав КНF 2 (при температуре 245-310°C). В лаборатории для приготовления небольших количеств свободного фтора можно использовать или нагревание MnF 4 , при котором происходит отщепление фтора, или нагревание смеси K 2 MnF 6 и SbF 5:

2K 2 MnF 6 + 4SbF 5 = 4KSbF 6 + 2MnF 3 + F 2 .

Нахождение в природе: содержание фтора в земной коре довольно велико и составляет 0,095% по массе (значительно больше, чем ближайшего аналога фтора по группе — хлора (Cl)). Из-за высокой химической активности фтор в свободном виде, разумеется, не встречается. Важнейшие минералы фтора — это флюорит (плавиковый шпат), а также фторапатит 3Са 3 (РО 4) 2 ·СaF 2 и криолит Na 3 AlF 6 . Фтор как примесь входит в состав многих минералов, содержится в подземных водах; в морской воде 1,3·10 –4 % фтора.

Применение: фтор широко применяют как фторирующий агент при получении различных фторидов (SF 6 , BF 3 , WF 6 и других), в том числе и соединений инертных газов ксенона (Xe) и криптона (Kr) . Гексафторид урана UF 6 применяется для разделения изотопов урана (U) . Фтор используют в производстве тефлона, других фторопластов, фторкаучуков, фторсодержащих органических веществ и материалов, которые широко применяют в технике, особенно в тех случаях, когда требуется устойчивость к агрессивным средам, высокой температуре и т. п.

ОПРЕДЕЛЕНИЕ

Фтор - элемент, относящийся к группе галогенов. Неметалл. Расположен во втором периоде VII группы A подгруппы.

Порядковый номер равен 9. Заряд ядра равен +9. Атомный вес - 18,998 а.е.м. Это единственный стабильный нуклид фтора.

Электронное строение атома фтора

Атом фтора имеет две оболочки, как и все элементы, расположенные во втором периоде. Номер группы - VII (галогены) - свидетельствует о том, что на внешнем электронном уровне атома азота находится 7 валентных электронов и до завершения внешнего энергетического уровня не хватает всего одного электрона. Обладает самой высокой окислительной способностью среди всех элементов Периодической системы.

Рис. 1. Условное изображение строения атома фтора.

Электронная конфигурация основного состояния записывается следующим образом:

1s 2 2s 2 2p 5 .

Фтор - элемент p-семейства. Энергетическая диаграмма для валентных электронов в невозбужденном состоянии выглядит следующим образом:

У фтора есть 3 пары спаренных электронов и один неспаренный электрон. Во всех своих соединениях фтор проявляет валентность I и степень окисления -1.

В результате взаимодействия фтор является акцептором электронов. В этом случае атом превращается в отрицательно заряженный ион (F —).

error: