LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet. Индикатор напряжения аккумулятора на LM3914 Стандартная схема подключения входного напряжения на микросхему LM3914

Интегральные стабилизаторы этой серии удобны в использовании во множестве иных применений. Некоторые из его нестандартных применений я вам хочу показать.
В силу того, что данные стабилизаторы имеют "плавающие" относительно "земли" потенциалы выводов, ими могут быть стабилизаторами напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений вход-выход.

Кроме того, ИС LM117/LM217/LM317 удобны при создании простых регулируемых импульсных стабилизаторов, стабилизаторов с программируемым выходным напряжением, либо для создания прецизионного стабилизатора тока.
Некоторые схемы их необычных применений показаны на рисунках.

Мощный повторитель напряжения.

R1-определяет выходное сопротивление зарядного устройства Zвых = R1(1+R3/R2). Использование R1 позволит при малой скорости заряда обеспечить максимальный заряд батареи.
________________________________________

Интегральные стабилизаторы данной серии можно с успехом использовать для стабилизации тока. Это очень удобно для изготовления на их основе различных зарядных устройств.
________________________________________

На этой схеме изображён интегральный стабилизатор напряжения с плавным запуском. Ёмкость конденсатора С2 задает плавность включения стабилизатора.
________________________________________

________________________________________

Высокая стабильность данного стабилизатора, достигается за счет использования дополнительного интегрального двухвыводного стабилитрона повышенной стабильности.

Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338
Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания . Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 - он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 - МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 - 1,5А. Однако был у него и недостаток - из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 - малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог - LM117 той же фирмы - различаются по ряду параметров, в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 - 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций - на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1)) и низкую стоимость (в магазине я купил LM317 в корпусе ТО-220 за 10 рублей).

Рисунок 1 - Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 - Схема регулируемого СН (1,25 - 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 - Схема зарядного усторойства

Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
- на ток до 3А рассчитана LM150 (IP150);
- на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий - у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие-же, что и на рисунке 2, цоколевка - как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Рисунок 4 - Зарядное устройство для автомобильного аккумулятора на LM150(IP150)


Рисунок 5 - СН с выходным током до 10А

В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ - в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.


Рисунок 6

Литература:
1. Shema.Tomsk.Ru - Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru - Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor - LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 - ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 5-A;
5. LM150/250/LM350 - ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.

Очень многие используют аккумуляторы для питания радиоэлектронной аппаратуры, при этом заряжают их зарядными устройствами сомнительного поисхождения. Ниже приводится описание простого зарядного устройсва обеспечивающего стандартный режим заряда.
Зарядное устройство использует принцип зарядки постоянным токо. В качестве источника тока используется очень хорошая микросхема LM317. Схема включения изображена на рисунке:

Класическое определение источника тока: источник тока - это источник электрической энергии имеющий безконечне внутреннее сопротивление и такое же безконечное напряжение на свобоных зажимах.
Принцип работы примерно такой. LM317 регулируя ток по выводу 3 пытается добится падения напряжения на резисторе R1 равного 1,25V. Следовательно изменяя номинал R1 можно регулировать ток в определенных пределах. Эти приделы ограничены с одной стороны величиной в 0,8 Ом а с другой в 120 Ом(0,8 <120 Ом). Не трудно посчитать что в соответствии этим величинам R1 можно получить ток от 0,01 Ампера (10 мА) до 1,5 Ампер.
Поскольку расположение выводов у LM317 не очевидно привожу рисунок самой микросхемы. (вид со стороны маркировки)

Пример
Итак, почти все что надо знать уже изложено, вот конкретный пример использования.
Емкость
mA Ток зарядки
mA Сопротивление
резистора Ом
500 50 24
Так как для нормальной работы необходимо чтобы было хоть какоето падение напряжения на LM317, поэтому напряжение подаваеммое на вход источника тока, должно превосходить наряжение на заряженном аккумуляторе. Например, если это два пальчиковых аккумулятора, то напряжение когда они полностью заряженны приближается к 3 В, и для их зарядки рекомендуется на вход источника тока подавать напряжение не менее 6 В. С другой стороны LM317 не "дубовая" и присутствие более 30 В на входе не желательно.
Питать зарядное устройство наиболее рационально от сети переменного тока 220В через понижающий трансформатор и выпрямитель с простейшим сглаживающим фильтром.

LM3914, LM3915, LM3916 это микросхемы для управления светодиодными индикаторами. Этакие АЦП, которые могут могут успешно управлять 10 светодиодами. Используя большее кол-во микросхем можно наращивать количество светодиодов.
В чем у них разница: у LM3914 линейная шкала и её можно использовать в качестве вольтметров.
У LM3915 и LM3916 логарифмическая шкала и они используются в качестве показателей уровня сигнала

Схема включения микросхем LM3914, LM3915, LM3916

Схема индикатора на микросхемах LM3914(15, 16) простейшая. Замыкая 9 ножку микросхемы на плюс питания, мы переводим её в режим управления светодиодами «столбцом». Для оперативного изменения этого режима можно поставить миниатюрный переключатель, либо пару штырьков замыкаемых джампером. Или вовсе закоротить или разомкнуть надолго, если изменение режимов не требуется.

По схеме, ток через светодиоды зависит от:
ILED = 12,5/R

где ILED - ток через светодиоды, R - сопротивление между 7 и 8 ножками микросхемы.

Например:

R=12,5/I
R для тока 1мА = 12,5 / 0,001 А = 12,5 кОм
R для тока 20мА = 12,5 / 0,02 А = 625 Ом.

Для возможности регулировки яркости свечения я поставил подстроечный резистор на 10 кОм. Если регулировка не нужна – можно поставить постоянный резистор 1 кОм.

C3 можно поставить 1 мкф, но R4 тогда нужно установить 100 кОм (RC постоянная остаётся та же). R2 можно поставить в диапазоне от 47 кОм до 100 кОм. Также, считаю необходимым отметить, что в схеме используется мой любимый КТ315

Необходимо заметить, что для аудио показометра, требуется один такой индикатор, если сигнал моно. И, как ни странно, два индикатора, если сигнал стерео (левый и правый каналы). Я решил не мелочиться, и намутить сразу две платы. Примерно вот такие:


Схема линейного интегрального стабилизатора с регулируемым выходным напряжением LM317 разработана автором первых монолитных трёхвыводных стабилизаторов Р. Видларом почти 50 лет назад. Микросхема получилась настолько удачной, что без изменений выпускается в настоящее время всеми основными производителями электронных компонентов и в разных вариантах включения применяется во множестве устройств.

Общая информация

Схемотехника устройства обеспечивает более высокие показатели по нестабильности параметров, в сравнении со стабилизаторами на фиксированное напряжение, и имеет практически все типы защиты, применяемые для интегральных микросхем: ограничение выходного тока, отключение при перегреве и превышении предельных рабочих параметров.

При этом требуется минимальное количество внешних компонентов для LM317, схема использует встроенные средства стабилизации и защиты.

Устройство выпускается в трёх вариантах исполнений – LM 117/217/317, отличающихся предельно допустимой рабочей температурой:

  • LM117: от -55 до 150 оС;
  • LM217: от -25 до 150 оС;
  • LM317: от 0 до 125 оС.

Все типы стабилизаторов производятся в стандартных корпусах TO-3, различных модификациях TO-220, для поверхностного монтажа – D2PAK, SO-8. Для устройств малой мощности используется ТО-92.

Цоколёвка для всех трёхвыводных изделий совпадает, что облегчает их замену. В зависимости от применённого корпуса, в маркировку вводятся дополнительные обозначения:

  • K – TO-3 (LM317K);
  • T – TO-220;
  • P – ISOWATT220 (пластмассовый корпус);
  • D2T – D2PAK;
  • LZ – TO-92;
  • LM – SOIC8.

Для LM317 используются все типоразмеры, LM117 выпускается только в корпусе ТО-3, LM217 – в ТО-3, D2PAK и ТО-220. Микросхемы LM317LZ в корпусах ТО-92 отличаются пониженными значениями максимальной мощности и выходного тока, до 100 мА, при аналогичных других свойствах. Иногда производитель использует свою маркировку, например, LM317НV от Texas Instruments – высоковольтные регуляторы в диапазоне 1,2-60 В, при этом цоколёвки корпусов совпадают с изделиями других фирм. В отличие от других микросхем, аббревиатура ЛМ (LM) применяется всеми производителями. Расшифровка других возможных обозначений приводится в техническом описании конкретного прибора.

Основные электрические параметры LM 117/217/317

Характеристики регуляторов определяются при разнице между входным (Ui ) и выходным напряжением (Uo ) 5 вольт, токе нагрузки 1,5 ампера и максимальной мощности 20 ватт:

  • Нестабильность по напряжению – 0,01%;
  • Опорное напряжение (UREF) – 1,25 В;
  • Минимальный ток нагрузки – 3,5 мА;
  • Максимальный выходной ток – 2,2 А, при разнице входного и выходного напряжений не более 15 В;
  • Предельная рассеиваемая мощность ограничена внутренней схемой;
  • Подавление пульсаций входного напряжения – 80 дБ.

Важно отметить! При максимально возможном значении Uin – Uout = 40 вольт допустимый ток нагрузки снижается до 0,4 ампер. Предельная рассеиваемая мощность ограничена внутренней схемой защиты, для корпусов ТО-220 и ТО-3 – приблизительно от 15 до 20 ватт.

Применения регулируемого стабилизатора

При проектировании электронных устройств, содержащих стабилизаторы напряжения, более предпочтительно применять регулятор напряжения на LM317, особенно для ответственных узлов аппаратуры. Использование таких решений требует дополнительной установки двух резисторов, но обеспечивает лучшие параметры питания, чем традиционные микросхемы с фиксированными напряжениями стабилизации, обладают большей гибкостью для разных применений.

Напряжение на выходе рассчитывается по формуле:

UOUT = UREF (1+ R2/R1) + IADJ, где:

  • VREF = 1,25V, ток управляющего выхода;
  • IADJ весьма мал – около 100 мкА и определяет погрешность установки напряжения, в большинстве случаев не учитывается.

Входной конденсатор (керамический или танталовый 1мкФ) устанавливается при значительном удалении от микросхемы ёмкости фильтра источника питания – более 50 мм, конденсатор на выходе применяется для снижения влияния переходных процессов на высоких частотах, для многих применений необязателен. Схема включения использует только один элемент регулировки – переменный резистор, на практике применяется многооборотный или заменяется постоянным нужного номинала. Метод управления позволяет реализовать программируемый источник на несколько напряжений, переключаемый любым доступным способом: реле, транзистором и т. д. Подавление пульсаций можно улучшить, если зашунтировать вывод управления конденсатором ёмкостью 5-15 мкФ.

Диоды типа 1N4002 устанавливаются при наличии выходного фильтра с конденсаторами большой ёмкости, выходном напряжении более 25 вольт и шунтирующей ёмкости свыше 10 мкФ. Микросхема LM317 редко используется на предельных режимах эксплуатации, средний ток нагрузки для многих решений не превышает 1,5 А. Установка прибора на радиатор необходима в любом случае, при выходном токе более 1 ампера желательно использовать корпус ТО-3 или ТО-220 с металлической контактной площадкой LM317T.

К сведению. Увеличить нагрузочную способность стабилизатора напряжения можно, применив мощный транзистор как регулирующий элемент для выходного тока.

Ток нагрузки устройства определяется параметрами VT1, подойдёт любой n-p-n транзистор с током коллектора 5-10 А: TIP120/132/140, BD911, КТ819 и др. Возможно параллельное включение двух-трёх штук. В качестве VT2 применяется любой кремниевый средней мощности, соответствующей структуры: BD138/140, КТ814/816.

Следует учитывать особенности подобных схем: допустимая разница между напряжениями на входе и выходе формируется из падений напряжений на транзисторе, около 2 вольт, и микросхеме, для которой минимальное значение – 3 вольта. Для устойчивой работы устройства рекомендуется не менее 8-10 вольт.

Свойства микросхем серии LM317 позволяют стабилизировать с высокой точностью ток нагрузки в широких пределах.

Фиксация тока обеспечивается подключением всего одного резистора, номинал которого рассчитывается по формуле:

I = UREF/R + IADJ = 1.25/R, где UREF = 1,25 V (сопротивление R в омах).

Схема может применяться для зарядки аккумуляторов стабильным током, питания светодиодов, для которых важно постоянство тока при изменении температуры. Также стабилизатор тока на LM317 может быть дополнен транзисторами, как и в случае стабилизации напряжения.

Отечественная промышленность выпускает функциональные аналоги LM317 со сходными параметрами – микросхемы КР142ЕН12А/Б с токами нагрузки 1 и 1,5 ампера.

Выходной ток до 5 ампер обеспечивает стабилизатор LM338 при аналогичных других характеристиках, что позволяет использовать все преимущества интегрального прибора без внешних транзисторов. Полным аналогом LM317 по всем параметрам, кроме полярности, является регулятор отрицательного напряжения LM337, на базе этих двух микросхем легко строятся двухполярные блоки питания.

Видео

На основе интегральной микросхемы LM3914 производителя National Semiconductors можно конструировать различные светодиодные индикаторы, имеющие линейную шкалу. Основой LM3914 является 10 компараторов.

Входной сигнал через операционный усилитель подается на инверсные входы компараторов LM3914, а прямые входы их подключены к напряжения. Десять выходов являются выходами компараторов, к которым подключаются светодиоды.

Выбор работы индикации: либо режим «столбик», это когда с изменением уровня входного сигнала меняется количество светящихся светодиодов, либо режим «точка», то есть с изменением уровня сигнала, перемещаясь по линейке светится только один светодиод.

Назначение выводов LM3914:

  • 1, 10…18 — выходы.
  • 2 — минус питания.
  • 3 — плюс источника питания от 3…18 вольт.
  • 4 — на данный вывод подается напряжение, величина которого определяет нижний уровень индикации. Допустимый уровень от Uн.min. = 0 до Uн.max. = (Uпит. – 1,5В.)
  • 5 — на данный вывод подается входной сигнал.
  • 6 — на данный вывод подается напряжение, величина которого определяет верхний уровень индикации. Допустимый уровень от Uв.min. = 0 до Uв.max. = (Uпит. – 1,5В.)
  • 7, 8 — выводы для регулирования тока, протекающего через светодиоды.
  • 9 — вывод отвечает за режим работы индикации («точка» или «столбик»)

Шаг переключения от одного светодиода к другому автоматически высчитывается микросхемой. Шаг будет равен (Uв. – Uн.)/10.

Алгоритм работы индикатора на микросхеме LM3914

До тех пор, пока на ножке Uвх. сигнал ниже по сравнению с напряжением на выводе Uн., светодиоды не горят. Как только входной сигнал сравняется с Uн. – загорится светодиод HL1. При последующем увеличение сигнала на величину (Uв. – Uн.)/10, в режиме «точка» выключается HL1 и одновременно загорается HL2. В том случае если LM3914 функционирует в режиме «столбик», то при включении HL2, HL1 не гаснет.

Микросхема LM3914 спроектирована для создания светодиодных индикаторов с линейной шкалой, и поэтому резисторы в составе делителя обладают одинаковым сопротивлением. Микросхема имеет источник опорного напряжения в 1,25 вольт. С помощью подключения дополнительно 2-х резисторов можно добиться увеличения опорного напряжения (не более Uпит. — 2 вольта; максимум 12 вольт).

Расчет опорного напряжения можно выполнить по следующей формуле:

Uоп = (R2/R1+1)*1,25В + Iв*R2, где

  • R1 — резистор, подключаемый к ножкам 7 и 8 микросхемы LM3914.
  • R2 — резистор, подключаемый между ножками 8 и минусом питания схемы.
  • Iв – сила тока на ножке 8 микросхемы (около 100 мкА)

Для выбора одного из двух режимов работы нужно сделать следующее:

  • Режим «точка» — вывод 9 подключить к минусу питания или оставить неподключенным.
  • Режим «столбик» — вывод 9 подсоединить к плюсу питания микросхемы.

Технические характеристики микросхемы LM3914

Стандартная схема подключения входного напряжения на микросхему LM3914

В зависимости от величины входного напряжения Uвх, необходимо подобрать сопротивление R1, при котором будет светиться верхний по шкале светодиод. Данное сопротивление можно вычислить по формуле: R1 = R2(Uвх/1,25 — 1).

Посредством включения резистора R3 можно добиться регулирования тока протекающего через светодиоды.

(1,6 Mb, скачано: 4 020)

Этот двухканальный индикатор сигнала звука на светодиодном столбике выполнен на специализированных микросхемах LM3914. Собрал данный индикатор по 60 светодиодов на каждый канал, все диоды красного свечения (больше нравятся по яркости свечения), хотя конструкция индикатора такова, что легко можно заменить планку на свечение диодов другого цвета. Конструктивно девайс имеет 3 платы:

1. Плата индикаторов (сменная).

2. Плата левого канала.

3. Плата правого канала.

Уровни индикации:

- Первый сегмент 20 mv
- 10 сегмент 150 mv
- 20 сегмент 300 mv
-.........
-.........
-.........
- 60 сегмент 900 mv

Калибровка производилась при помощи милливольтметра раздельно по каналам и затем уже как сравнение двух вместе. Конструктивно микросхемы стоят в панелях, для удобства замены, к примеру для логарифмического индикатора на LM3915.

Ее основу составляют 10 компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения. Выходы компараторов являются генераторами втекающего тока, что позволяет подключать светодиоды без ограничительных резисторов. Индикация может производиться или одним светодиодом (режим "точка”), или линейкой из светящихся светодиодов, высота которой пропорциональна уровню входного сигнала (режим "столбик”). Входной сигнал Uвх подают на вывод 5, а напряжения, определяющие диапазон индицируемых уровней, - на выводы 4 (нижний уровень Uн) и 6 (верхний уровень Uв).

Таблица рабочих параметров микросхемы LM3914

Ток потребления при всех горящих LED сегментах обоих каналов порядка 1,3А при питании 5В. На платах не применен входной усилитель сигнала, но чувствительность его такова, что нижний предел (первый сегмент) можно зажечь меньше чем 20 mv переменного сигнала.


Уровня сдвоенная на 2 канала имеет размер 157х32 мм. Каждая плата канала раздельная (левый и правый) имеет размер 157х24 мм. В собраном виде конструктив имеет размеры: 157х32х45 мм.


В качестве настройки правильной линейности шкалы необходимо выбрать пределы нижних и верхних уровней для каждой микросхемы. Принципиально есть возможность при желании растянуть шкалу каждого канала в несколько раз при данном схемном решении.


Блок может быть применен как самостоятельное устройство, так и в составе с усилителем НЧ. Несколько фото собранного устройства вы видите в стате.


Видео, демонстрирующее его работу:

За основу брал и только, готовых решений в сети не нашел. Схему собрал и испытал - ГУБЕРНАТОР

Обсудить статью СВЕТОДИОДНЫЙ ИНДИКАТОР УРОВНЯ СИГНАЛА

error: